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Abstract 

A general theory tor diffuse X-ray scattering from self 
interstitials in a lattice containing more than one atom 
per unit cell is presented. Expressions for Laue 
scattering at the defect and the scattering from the 
strongly distorted region around the defect are un- 
affected by the number of atoms in the unit cell. 
However, the larger diffuse scattering contribution 
from terms linear in the lattice distortions depend on 
the number of atoms in the unit cell. The general 
expression is calculated using a lattice statics tech- 
nique. An expression is also given for the Huang diffuse 
scattering in a general lattice using the continuum 
theory of linear elasticity. As an example, Huang 
diffuse scattering calculated from the lattice statics 
method and elasticity theory is compared in zinc, an 
h.c.p, lattice with two atoms per unit cell. 

I. Introduction 

The existing theories of diffuse X-ray scattering from 
cubic lattices (Krivoglaz, 1969; Dederichs, 1973) are 
inadequate for analyzing the diffuse scattering data 
from self-interstitials in a lattice containing more than 
one atom in the unit cell. In this paper we present a 
modified theory of diffuse scattering for point defects in 
a general lattice. 

Following a method due to Kanzaki (1957) and 
using the modified dynamical matrix, we find an 
expression for the Fourier transformed displacement 
field of the defect. The Fourier transform is then used to 
obtain an expression for the diffuse X-ray scattering 
cross section in a general lattice. A general expression 
for the Huang diffuse scattering is also obtained using 
the continuum theory of linear elasticity. For lattices 
with one atom per unit cell, these expressions reduce to 
the well known formulas of diffuse scattering. 

2. Theory 

Consider a low concentration C (number per unit 
volume) of point defects distributed at random in a 
perfect lattice. Assuming a linear superposition of the 

0567-7394/82/060814-04501.00 

strain fields around the point defects and neglecting the 
interference between the scattering contributions from 
different defects (the 'single defect approximation'), 
the diffuse X-ray scattering cross section can be written 
as 

lo=CIF(O)l  2, (1) 

where 

F(Q) = f ~  + f Y [ e x p  ( i Q . u n ) -  1] exp (iQ.P,n). (2) 
n 

F(Q) is the defect structure factor; f ~  represents the 
scattering at the defect and f is the atomic scattering 
factor of the atoms in a perfect lattice. 1~, is the position 
vector of an atom n in the average lattice, i.e. in a 
lattice homogeneously relaxed by all the other defects 
and u, is the static displacement of the atom n due to 
the defect singled out. The scattering vector Q satisfies 
the relationship Q = q + h, where h is a re- 
ciprocal-lattice vector and q a vector within the first 
Brillouin zone. Equation (1) can be rewritten in the 
form 

Io=c[f~ 
+ f ~  [exp ( iQ .un ) -  1 - iQ. u n] exp (iQ. P,n) 

n 

+ / f Q .  Z Un exp (iQ. [In) (3) 
n 

Let us now look into the evaluation of each of the three 
terms in (3). We will point out as we go along the 
differences arising due to the lattice containing more 
than one atom in the unit cell. 

The first termf~ in (3) contains only the scattering at 
the defect (Dederichs, 1973) and its evaluation will be 
independent of the number of atoms in the unit cell of 
the perfect lattice. The next term, the first sum in (3), 
contains terms of second and higher order in the 
displacements u,, and has a finite contribution only 
from the strongly distorted immediate neighbourhood 
of the defect. Since the displacements of the atoms 
around the defect have to be calculated explicitly by the 
methods of lattice statics, the mode of evaluation of this 
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term also will not depend on the number of atoms in the 
unit cell. 

The second sum of (3) has a finite contribution from 
all the atoms of the lattice and contains terms of first 
order in displacements. To calculate this term, we need 
an expression for the Fourier transform of the 
displacement field. We proceed as follows using a 
method due to Kanzaki (1957). 

In the harmonic approximation the total potential 
energy of the perfect lattice tp, distorted under the 
application of applied external force K (Maradudin, 
Montroll, Weiss & Ipatova, 1971) can be written as 

~o- ~o o = - Y  K , , i l k )  u,~(lk) 
lkot 

+ ½ Y o~(tk; t' k') u~(Ik) u~q' k') 
lka  

l' k' t5 

(4) 

where 

t~2 0" q~ (tk;l' k ' ) =  ~0 (5) 
8u,~(lk) 8u~(l' k') 

The subscript zero implies that the derivatives are 
evaluated at the equilibrium configuration. Expanding 
u~ in a series of plane waves 

u,~(Ik) = • u,~(q)exp [-iq.x(Ik)], (6) 
q 

where x(lk) = x(l) + x(k) stands for the position vector 
of the kth atom in the/th unit cell. 

~0-- tp0=--  ~ K,~(lk) ~. u,~(q) exp [-iq.x(Ik)] 
lka q 

+ ½ ~, tpo4~(lk;l' k') ~. uo,(q) 
lka  q 

l'k'fl 

x exp [-iq.x(lk)] Y u~(q') 
q' 

x exp [--iq', x(l' k')]. (7) 

Since u~(q) is independent of the indices l and k, the 
first term in (7) can be written as 

- -  Z u,~(q) Z K,~(lk) exp [-iq.x(lk)] 
qct lk 

= - Z  u~(q) K.(q), (8) 
qa  

where 

K~(q) = Y K,,(lk)exp [--iq.x(lk)l 
lk 

is the Fourier transform of the applied external forces. 

Since q~,~ depends on l and l '  only through their 
difference, the second term in (7) can be written 

½ ~. q~,,~(lk;l' k') Z u,,(q)u~(q') 
l-- 1' qq' 
kk'  

x exp {--iq'. [x(l') -- x(l)]} exp/-- i Iq ,  x(k) 

+ q'.x(k')]} ~ exp l - i ( q  + q'). x(l)l. (9) 
l 

We now use the relationship 

exp [--i(q + q ' ) . x ( / ) =  NA(q + q'). (10) 
l 

Here d(q + q') equals zero unless (q + q') is zero or a 
reciprocal-lattice vector, in which case it equals unity. 
N represents the total number of unit cells in the lattice. 
Since all q vectors lie in the first Brillouin zone, we have 
q = --q'. Equation (9) can then be written as 

N 
- -  ~, q~ o(Ik;l '  k ' )  

2 l-- l' ap  
ka  

x ~ u,~(q) u~(--q) exp { - iq . [x ( l k ) -  x(/' k')]} 
q 

N 
= -2  ~ u o(q) u~(-q) 

a/3 

x ~ ~o,~(lk;l' k')  exp { - iq . [x ( l k ) -  x(l' k')]} 
l -- l '  
kk'  

N 

= ~ 2  ~ u,,(q)u/3(--q) 
a/3 

x ~ C,~ (kk';q) (m k ink,) 1/2, (11) 
kk' 

where C ~  represents the modified dynamical matrix 
(Maradudin et al., 1971) and m k the mass of the kth 
atom in the unit cell. 

Using (8) and (11), (7) can be written as 

~P -- q~o = -- ~ K,~(q) u,~(q) 
qa 

N 

+ - -  Z u,,(q) u~(--q) 2 
q 

x X (mkm1,,)mC~(kk';+q) • 
kk' 

(12) 
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Making use of the equilibrium condition 

- - - 0 ,  (13) ,gu~(q) 
we find 

K~,(q)=N~, u~(--q) Z (mkmk,)l/2C,~(kk';q) (14) 
kk '  

which gives 

1 
u~(q) = ~ -  ~ exp {-iq.[x(k) - x(k')] } 

t t  

kk '  

D-~(kk' ;-q) 
X (mkmk,)l/2 Ko,(--q), (15) 

where D,~ is the dynamical matrix. 
Equation (15) is an expression for the Fourier 

transform of the displacement field in a lattice with 
more than one atom per unit cell. Substituting (15) into 
(3) gives the expression for the diffuse X-ray scattering 
cross section in a general lattice 

zo-- clf  
+ f  ~ [exp (iQ.un) - 1 - iQ. un] exp (iQ. 1~ n) 

n 

+ (if~N) ~. exp [ih. x(k)] ~ O~ 
k 8 

x Z exp { - i q . [ x ( k ) -  x(k')]} 
Ot 

k' 

D-d~(kk, ;_q) [2 
× (mkrnk,) v2 K~(--q) (16) 

We observe that the main difference arising due to the 
lattice containing y (y > 1) atoms in the unit cell is that 
the dynamical matrix D is no longer a 3 x 3 matrix. 
But it can be represented by a y x y supermatrix, 
elements of which are 3 x 3 matrices (Dewames, 
Wolfram & Lehman, 1965). The contribution from 
each element of the supermatrix to the diffuse scatter- 
ing cross section has to be appropriately weighted by a 
phase factor and the masses of the atoms in the unit 
cell. For lattices with one atom per unit cell, (16) 
reduces to the well known formulas of diffuse scatter- 
ing for these lattices. 

3. Huang diffuse scattering 

In this section, we investigate how the expressions for 
Huang diffuse scattering (HDS) is modified when the 
lattice contains more than one atom in the unit cell. 
HDS, which appears close to Bragg peaks, depends on 
the long-range displacement field of the point defect 
and can be calculated using the continuum theory of 

Ira, s = C I ifh.Y 
k 

linear elasticity. Close to Bragg peaks, q .~ h, (1) can be 
approximated by 

Io= CIfZ~-f~ (1 - c o s  h.un) ex p (iQ. P,,,) 
I n 

i f h . ~  UneX p (ih. ~,n) ] 2. (17) + 

n I 

In the following we restrict our attention to HDS [third 
term in (17)], which makes the main contribution at 
small q values. The summation in (17) can be split into 
two sums: one over the atoms in the unit cell and other 
over all the unit cells of the lattice. We have then for 
HDS cross section 

IHDs=C ifh ~ u(lk)exp tzl~.lx(l) + x(k)l} . (18) 
k 

Since all the atoms in a unit cell will be displaced 
equally in the elastic displacement field of the point 
defect, u(/k) is independent of the sublattice index k and 
may be replaced by u(l). Equation (18) then reduces to 

exp [ih.x(k)] ~ u(l) exp [ i q .  x ( l ) ]  I 2 
1 I 

~-Cli{f ~ exp [ih'x(k)]} ~ , (19) 

where u(q) is the Fourier transform of the elastic 
displacement field of the point defect and V c denotes 
the volume of the unit cell. We note that the presence of 
more than one atom in the unit cell has resulted in the 
appearance of an additional phase factor. 

4. Huang diffuse scattering in zinc 

As an example, we calculate the HDS from a self 
interstitial in zinc, an h.c.p, lattice with two atoms per 
unit cell, using both (16) and (19). Since the elastic 
constants and the atomic force constants are related, a 
comparison of HDS as calculated by these two 
different methods will provide a good check on the 
theory developed in the preceding sections. 

Of the four self-interstitial configurations permitted 
by the symmetry of an h.c.p, lattice, octahedral (O), 
tetrahedral (T) and a dumbbell aligned along the c axis 
(S c) have tetragonal symmetry, while the crowdions 
(C) have orthorhombic symmetry. As the crowdion 
has been ruled out experimentally (Ehrhart & Schon- 
feld, 1979) we restrict our attention to the O, T and Sc 
configurations. In the following, all equivalent orien- 
tations of a given defect configuration are assumed to 
be equally populated and their contribution to HDS is 
averaged. 
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Using (19), HDS averaged over all possible orien- 
tations of a given defect configuration can be written as 

1 IHD s ---- exp [ih.x(k)] Y ~'v 7z. (20) 
k v=l 

zc v represent the five independent parameters in the 
tensor PuPkt, which is an average over the product of 
dipole force tensors p. y, can be calculated from the 
elastic constants and the direction of q and h.* 

In order to compute HDS using (16), we require 
Kanzaki forces due to the defect, the dynamical matrix 
and the perfect-lattice Green functions for zinc. Since 
the interstitial in zinc has a large relaxation volume (3.6 
atomic volumes), the defect forces are expected to be 
long range. Kanzaki forces, extending up to the third 
neighbour around the defect, were calculated using the 
experimental values of the force dipole tensor (Ehrhart 
et aI., 1979).* We computed the dynamical matrix and 
the lattice Green functions for zinc (Khanna, 1982) 
using a modified axially symmetric force constant 
model due to Dewames et al. (1965). 

For the sake of comparison, the HDS was computed 
for the O, T and S c configurations near the 002 
reflection in the [001] direction. Since the experimental 
value of dipole force tensor was used for the com- 
putation, all of them yielded identical HDS close to 
Bragg peaks. This is to be expected since these defects 
have the same long-range symmetry. The computed 
HDS also showed the expected 1/q 2 behaviour very 
close to Bragg peaks. 

* A list of y~ for some high-symmetry reflections and directions 
and specific forms of rr and a table containing general expressions 
for the dipole force tensor components have been deposited with the 
British Library Lending Division as Supplementary Publication No. 
SUP 36990 (4 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 

From elasticity theory, the HDS close to a 002 
reflection in the [001] direction is 

IHDs=C[ f ~  ~ exp [ih. x(k)] [ 2 (~)2 p23C23 (21) 

Substituting the computed value of IHDS for a given P33 
in (21) we get C33 = 67.8 GN m -2. This is exactly the 
value quoted by Dewames et al. (1965) based on their 
atomic force constants. Thus the general theory valid 
over the entire q space correctly predicts the Huang 
diffuse scattering close to Bragg peaks. 
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Abstract 

Refinements leading to accurate structural parameters 
are possible by using the measured data F 2 of a twinned 
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crystal with exactly superimposed reciprocal lattices 
and accumulating the sum for the n twin domains, 
~ ai I kFci 12, of the calculated squared structure factors, 
[kFci 12, weighted according to the fractional contri- 
bution a I of twin i to the total squared structure factor 
IkFc 12. The derivatives with respect to structural 
parameters and the overall scale factor (k) may be 
© 1982 International Union of Crystallography 


